4.8 Article

Electron transfer enhancing the Mn(II)/Mn(III) cycle in MnO/CN towards catalytic ozonation of atrazine via a synergistic effect between MnO and CN

期刊

WATER RESEARCH
卷 230, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.119574

关键词

Catalytic ozonation; MnO; CN; Synergistic effect; Atrazine

向作者/读者索取更多资源

In this study, a new type of hybrid material Mn-nCN, composed of manganese oxide (MnO) dispersed on carbon-nitrogen (CN) material, was fabricated as a catalyst for heterogeneous catalytic ozonation (HCO) and showed excellent catalytic performance in degrading refractory organic pollutants. The synergistic effects between MnO and CN, facilitated by the C-N-Mn and C-O-Mn bonds in the catalyst, overcome typical issues such as metal leaching, and promote redox reactions of Mn by promoting electron transfer from cation-pi reactions. The study also demonstrated the involvement of surface hydroxyl groups in ozone decomposition and reactive oxygen species (ROS) production.
In this study, manganese oxide (MnO) dispersed on CN (Mn-nCN) was fabricated as a catalyst in heterogeneous catalytic ozonation (HCO), achieving excellent catalytic performance on refractory organic pollutant degradation via the synergistic effects between MnO and CN. The study demonstrated that the C-N- Mn and C-O-Mn bonds constructed in the catalyst linking MnO and CN created the synergistic effects which could overcome typical problems, such as metal leaching etc. The C-N-Mn and C-O-Mn bonds could promote electron transfer from cation-pi reactions to form electron-rich Mn(II) sites and electron-poor CN sites. The electron-rich Mn(II) sites as active sites supplied electrons to ozone which then further evolved into reactive oxygen species (ROS). The electron-poor CN sites captured electrons from the pollutant intermediate radicals to electron-rich Mn(II) sites via cation-pi reactions with the help of C-N-Mn and C-O-Mn bonds, which promote the redox reactions of Mn. The surface hydroxyl groups also participated in ozone decomposition and ROS production. Additionally, center dot OH was the dominant ROS of the Mn-nCN HCO processes. This study presents the excellent HCO performance of Mn-nCN, as well as provides views on the electron transfer route between the catalyst, pollutant and ozone, which is crucial for the design of the catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据