4.8 Article

In situ remediation mechanism of internal nitrogen and phosphorus regeneration and release in shallow eutrophic lakes by combining multiple remediation techniques

期刊

WATER RESEARCH
卷 229, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.119394

关键词

Remediation mechanism; Internal loading; NH 4+regeneration; P release; Eutrophic lake

向作者/读者索取更多资源

This study investigates the remediation mechanism of multiple remediation technique combinations on sediment nitrogen and phosphorus loads. The results show that combining multiple remediation techniques is more effective in controlling sediment phosphorus loads than a single remediation in the long term.
Large anthropogenic inputs of N and P alter the nutrient cycle and exacerbate global eutrophication problems in aquatic ecosystems. This study in Lake Datong, China, investigates the remediation mechanism of multiple remediation technique combinations (dredging, adsorbent amendment, and planting aquatic vegetation) on sediment N and P loads based on two high-resolution sampling techniques (HR-Peeper and DGT) and P sequential extraction procedures. The results showed that high temperature and low dissolved oxygen considerably enhanced pore water dissolved reactive P (DRP) and NH4+ concentrations attributable to abundant Fe-P and organic matter content in the sediment. Fe reduction is critical for regulating pore water DRP release and promoting N removal. Overall, for Lake Datong, combining multiple remediation techniques is more effective in controlling sediment P loads (pore water DRP, P fluxes, forms of P, and labile P), from a long-term perspective, than a single remediation. Lanthanum-modified bentonite (LMB) inactivation treatment can transfer mobile P in the surface sediment into more refractory forms over time, thereby reducing the risk of sediment labile P release. However, it is difficult to effectively remediate internal P loads owing to inappropriate dredging depths and low biomass of aquatic vegetation. Future lake restoration practices should optimize the selection of different remediation technique combinations based on internal N and P pollution characteristics, while reducing external wastewater input. These results are important for understanding the remediation mechanisms of internal N and P and provide suggestions for sediment management of shallow eutrophic lakes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据