4.7 Article

Prediction of ultimate condition of FRP-confined recycled aggregate concrete using a hybrid boosting model enriched with tabular generative adversarial networks

期刊

THIN-WALLED STRUCTURES
卷 182, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2022.110318

关键词

FRP confined concrete; Recycled aggregate concrete; Machine learning; XGBoost; Beetle antennae search algorithm; Axial behavior

向作者/读者索取更多资源

This paper presents an alternative approach to evaluating the performance of recycled aggregate concrete columns using FRP jacketing. The XGBoost method and beetle antennae search metaheuristic algorithm are used to optimize the model, and a synthetic data generator is introduced to supplement the training data. The developed model outperforms existing models and improves the understanding of the axial stress-strain behavior of FRP-confined concrete.
Despite its multiple benefits, recycled aggregate concrete (RAC) usually exhibits inferior properties compared with natural aggregate concrete, which has been deemed as a hurdle to its widespread use. One way to overcome this roadblock is to apply FRP jacketing. However, it appears not easy to quantify the axial performance of FRP-confined recycled aggregate concrete columns (FRACC), due largely to the complex load -resisting mechanisms involved. Also, the weakness of RAC itself further compound the problem. This paper aspires to deliver an alternative means to address this difficulty. A powerful boosting approach, XGBoost, was developed to fulfill the goal, where its hyperparameters was fine-tuned by a beetle antennae search metaheuristic algorithm. Meanwhile, a synthetic data generator, tabular generative adversarial networks, was introduced to supplement the limited training data. The model developed outperformed existing empirical equations and several baseline machine learning models. Teng et al.'s FRP-confined concrete model was also improved for better tracing the axial stress-strain behavior. Besides, interpreting the model allows better understanding of the underlying mechanisms such as the minimum reinforcement ratio of FRP required to mitigate the negative effects of RAC. Finally, two data-driven, explicit design equations are given for practical design of FRACC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据