4.7 Article

A framework to model thermomechanical coupled of fracture and martensite transformation in austenitic microstructures

期刊

THIN-WALLED STRUCTURES
卷 183, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2022.110435

关键词

Thermomechanical; Phase-field approach; Coupled thermoelastic problem; Fracture mechanics; Martensitic transformation

向作者/读者索取更多资源

A fully thermomechanical coupled phase-field model is developed to investigate austenite-to-martensite phase transformation and crack initiation and propagation in pure austenitic microstructures. The model considers latent heat transfer, temperature dependency, fracture surface energy, and damage evolution. The results demonstrate the applicability of the model in predicting fracture mechanisms in a thermomechanical field. The study highlights the significant impact of temperature on phase transformation and crack growth.
A fully thermomechanical coupled phase-field (PF) model is presented to investigate the mechanism of austenite-to-martensite phase transformation (MPT) and crack initiation as well as its propagation in pure austenitic microstructures. The latent heat release and absorption involved in the MPT are explicitly taken into account by coupling the PF model with transient latent heat transfer. In order to consider temperature dependency in the PF model for MPT, a temperature-dependent Landau polynomial function, whose parameters are identified using molecular dynamics (MD) simulations, is proposed. Furthermore, the fracture surface energy is approximated based on the second-order PF model and then, the temporal evolution of the damage variable is given by the variational derivative of the total potential free energy of the system with respect to the damage variable. The achieved numerical results demonstrate that the model can be employed to predict the fracture mechanism of austenitic microstructures under a thermomechanical field in a multiphysics environment. The results reveal that the temperature has a tremendous impact on the growth rate of both martensitic variants and consequently on the crack growth path. The key contributions of this work are to shed light on the impact of thermal boundary conditions on the coupled process of MPT, crack initiation and growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据