4.7 Article

Vibration-based structural damage detection using 1-D convolutional neural network and transfer learning

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/14759217221137931

关键词

Structural damage detection; convolutional neural network; transfer learning; vibration signals; bridge model

向作者/读者索取更多资源

This paper presents a novel vibration-based structural damage detection approach using a one-dimensional convolutional neural network and transfer learning. The results demonstrate that the accuracy and convergence speed of damage detection can be significantly improved by using transfer learning, and the method shows good generalization in different scenarios.
This paper presents a novel vibration-based structural damage detection approach by using a one-dimensional convolutional neural network (1-D CNN) and transfer learning (TL). The CNN can effectively extract structural damage information from the vibration signals. However, the CNN training needs enough samples, while some damage samples (scenarios) obtained from real structures are limited, which will compromise the CNN ability to detect structural damage. As a solution, the numerical models have potential to provide sufficient CNN training samples; meanwhile, the state-of-the-art TL technique can significantly shorten the network training time and improve the accuracy. Therefore, this paper proposes a new method to detect the damage of a bridge model. The 1-D CNN is firstly trained with the samples of the single damage scenarios of the numerical bridge model. And then it is transferred to the complex scenarios of multi-damage (double or triple simultaneously), random size structures, and experimental model. The results demonstrate that: with the TL, the accuracy of damage detection is increased by about 47% at most, and the convergence speed is increased by at least 50%; in particular, the TL can inhibit over-fitting, and for the real bridge case, the accuracy also increased by 44.4%. It is demonstrated that: the TL can effectively improve the damage detection accuracy and convergence effect, and the application of this method to the random size structures also proves its generalization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据