4.7 Article

Aptamers-functionalized nanoscale MOFs for saxitoxin and tetrodotoxin sensing in sea foods through FRET

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2022.121827

关键词

MOF; Aptamer; Fluorescence sensing; Saxitoxin; Tetrodotoxin; FRET

向作者/读者索取更多资源

Two nano-sensors were developed for the detection of marine toxins in seafood, showing low detection limits, stability, and selectivity. The sensors were successfully applied in shellfish sample for toxin sensing.
Saxitoxin (STX) and tetrodotoxin (TTX) are widely distributed and extremely harmful marine toxins, it is certainly worth to spend effort to develop facile methods to detect them in sea food for human safety. In this work, two nano-sensors were developed by combining with two zirconium fluorescence Nanoscale metal-organic frameworks (NMOFs) with two emissions and TAMRA-labelled aptamers for STX and TTX sensing, respectively. The recognition of STX and TTX by these nano-sensors could change the structure of aptamer, which caused the blue or green emissions from NMOFs (energy donor) decreased while red emission from TAMRA-labelled aptamers (energy acceptor) increased owing to fluorescence resonance energy transfer (FRET) effect. Based on this strategy, NMOFs-Aptasensor 1 and NMOFs-Aptasensor 2 were developed for the ratiometric detection, with detection limits of 1.17 nM and 3.07 nM for STX and TTX, respectively. Moreover, NMOFs-Aptasensors displayed significant stability, pH-independence, selectivity and NMOFs-Aptasensors were successfully applied in shellfish sample for toxin sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据