4.6 Article

An audio-tactile interface based on dielectric elastomer actuators

期刊

SMART MATERIALS AND STRUCTURES
卷 32, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-665X/acb6da

关键词

dielectric elastomer; sensing; acoustics; tactile feedback; user interface

向作者/读者索取更多资源

This paper introduces a concept of a dielectric elastomer actuator (DEA) user interface (smart button) that can detect a user's touch and provide multi-sensory tactile and acoustic feedbacks through a single electrical input signal. The DEA utilizes a multi-layer layout, with one layer detecting user-driven deformations and the remaining layers providing actuation. By exciting different vibration modes of the same active membrane over different frequency ranges, combined tactile and acoustic feedbacks are produced. The system presented in this paper offers improved sensing performance and integration, specifically optimized for user-interaction applications.
This paper presents a concept of a dielectric elastomer actuator (DEA) user interface (smart button) that can sense a user's touch and provide multi-sensory tactile and acoustic feedbacks through a single electrical input signal. The DEA relies on a multi-layer layout, in which a layer detects user-driven deformations (touches) via custom-built capacitance sensing electronics, and the remaining layers are used to provide actuation (audio-tactile feedbacks). Building upon a recently presented principle, combined tactile and acoustic feedbacks are produced by concurrently exciting different vibration modes of the same active membrane over different frequency ranges. An integrated demonstrator setup is presented, which includes a DEA, an acoustic enclosure, compact sensing and driving electronics. A characterization of the prototype is conducted, including an analysis of the sound pressure level, the force/stroke output at lower working frequencies, the ability to sense deformations with different profiles and produce combined audio-tactile outputs. Compared to previous works on multi-function DEAs, the system presented in this paper provides largely improved sensing performance (with lower working voltage) and features a deeper level of integration (with small-scale custom sensing electronics, and logics embedded onto scalable microcontrollers) and is thus specifically optimised for user-interaction applications. On this end, tests with users are presented here for the first time, which allowed evaluating the subjective perception of the interface's feedbacks. By means of further optimisation and miniaturisation of the power/sensing electronics and structural components, the layout and multifunction DEA principle presented here might lead, in the future, to the development of DEA-based smart buttons for active surfaces, or portable/wearable user interfaces and communicators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据