4.8 Article

Tailored Heterojunction Active Sites for Oxygen Electrocatalyst Promotion in Zinc-Air Batteries

期刊

SMALL
卷 19, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202206341

关键词

cobalt oxide; cobalt phosphide; electrocatalyst; heterostructures; zinc-air batteries

向作者/读者索取更多资源

This work proposes a novel method to design a heterogeneous CoP/CoO electrocatalyst on mesopore nanobox carbon/carbon nanotube (CoP/CoO@MNC-CNT) that enriched active sites and synergistic effect. The well-defined heterointerfaces could lower the energy barrier for intermediate species adsorption and promote OER and ORR electrochemical performances. The ZABs-based CoP/CoO@MNC-CNT air-cathode shows high performance in terms of ORR half-wave potential and OER overpotential, and the flexible ZABs exhibit highly mechanical stability, demonstrating their application potential in wearable electronic devices.
Rechargeable zinc-air batteries (ZABs) are promising energy storage systems due to their low-cost and safety. However, the working principle of ZABs is based on oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which display sluggish kinetic and low stability. Herein, this work proposes a novel method to design a heterogeneous CoP/CoO electrocatalyst on mesopore nanobox carbon/carbon nanotube (CoP/CoO@MNC-CNT) that enriched active sites and synergistic effect. Moreover, the well-defined heterointerfaces could lower the energy barrier for intermediate species adsorption and promote OER and ORR electrochemical performances. The CoP/CoO@MNC-CNT electrocatalyst presents a high half-wave potential of 0.838 V for ORR and a small overpotential of 270 mV for OER. The ZABs-based CoP/CoO@MNC-CNT air-cathode shows an open-circuit voltage of 1.409 V, the long-term cycle life of 500 h with a small voltage difference change of 7.7%. Additionally, the flexible ZABs exhibit highly mechanical stability, demonstrating their application potential in wearable electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据