4.8 Article

4D Direct Laser Writing of Submerged Structural Colors at the Microscale

期刊

SMALL
卷 19, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202204630

关键词

direct laser writing; femtosecond lasers; four-dimensional printing; pH-responsive hydrogels; structure colors

向作者/读者索取更多资源

In this study, a high-resolution hydrogel photoresist was developed for the fabrication of 4D microscopic SCs using the femtosecond direct laser writing method. By adjusting the laser parameters, pixel palettes with various colors were printed, covering almost the entire color space. Additionally, the hydrogel photoresist was able to undergo reversible discoloration by regulating the solution pH.
Biomimetic stimuli-responsive structure colors (SCs) can improve the visualization and identification in the micro functional structure field such as information encryption/decryption and smart actuators. However, it is still challenging to develop the ability to 4D print arbitrary submerged colorful patterns with stimuli-responsive materials at the microscale. Herein, a hydrogel photoresist with feature resolution (98 nm) for the fabrication of 4D microscopic SCs by the femtosecond direct laser writing method is developed. The 4D printed woodpile SCs are grouped as pixel palettes with various laser parameters and they spanned almost the entire color space. The coloring mechanism of diffraction gratings is not only investigated by optics microscopy and spectroscopy but also supported by simulation. Moreover, the 4D printed hydrogel-integrated amphichromatic fish constructions and pixelated painting can visually discolor reversibly by regulating the solution pH. This finding promises an ideal coloring method for sensors, anti-counterfeiting labels, and transformable photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据