4.8 Article

Electrospinning Triboelectric Laminates: A Pathway for Scaling Energy Harvesters

期刊

SMALL
卷 19, 期 14, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202205563

关键词

contact electrification; electrospinning; energy harvesting; Polymers; triboelectric nanogenerators

向作者/读者索取更多资源

A new paradigm of triboelectric polymers, the triboelectric laminate, is reported, which shows electromechanical response comparable to polyvinylidene difluoride. The response in the laminate arises from aligned dipoles generated by contact electrification. The loose interface between different polymer fibers ensures friction and triboelectric charging.
Herein, a new paradigm of triboelectric polymers-the triboelectric laminate-a volumetric material with electromechanical response comparable to the benchmark soft piezoelectric material polyvinylidene difluoride is reported. The electromechanical response in the triboelectric laminate arises from aligned dipoles, generated from the orientation of contact electrification in the laminates bulk volume. The dipoles form between sequential bilayers consisting of two different electrospun polymer fibers of different diameter. The loose interface between the fiber bilayers ensures friction and triboelectric charging between two polymers. The electric output from the electrospun triboelectric laminate increases with increasing density of the bilayers. This system design has clear benefits over other flexible devices for mechanical energy harvesting as it does not require any poling procedures, and the electromechanical response is stable over 24 h of continuous operation. Moreover, the electromechanically responsive electrospun laminate can be made from all types of polymers, thus providing ample room for further improvements or functionalities such as stretchability, biodegradability, or biocompatibility. The concept of a triboelectric laminate can be introduced into existing triboelectric nanogenerator form factors, to dramatically increase charge harvesting of a variety of devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据