4.8 Article

Cell-Mimic Directional Cargo Transportation in a Visible-Light-Activated Colloidal Motor/Lipid Tube System

期刊

SMALL
卷 19, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202204260

关键词

active transportation; cell-mimicking; colloidal motors; giant unilamellar vesicles; lipid tubes

向作者/读者索取更多资源

A hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells, enabling directional delivery of lipid vesicles. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects.
Active tether and transportation of cargoes on cytoskeletal highway enabled by molecular motors is key for accurate delivery of vesicles and organelles in the complex intracellular environment. Here, a hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells. The colloidal motors, composed of gold-coated hematite, display light-activated self-propulsion tunable by the light intensity and the concentration of hydrogen peroxide fuel. Importantly, the motors show light-switchable binding with lipid cargoes and attachment to the lipid tubes, whereby the latter act as the motor highways. Upon assembly, the colloidal motor/lipid tube system demonstrates directional delivery of lipid vesicles, emulating intracellular transportation. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects, supported by finite element analysis. A synthetic analog of the biological protein motor/cytoskeletal filament system is realized for the manipulation and delivery of different matter at the microscale, which is expected to be a promising platform for various applications in materials science, nanotechnology, microfluidics, and synthetic biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据