4.6 Article

Intensification of Upper-Ocean Submesoscale Turbulence through Charney Baroclinic Instability

期刊

JOURNAL OF PHYSICAL OCEANOGRAPHY
卷 46, 期 11, 页码 3365-3384

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO-D-16-0050.1

关键词

-

资金

  1. Agence Nationale pour la Recherche through ANR project SMOC [ANR-11-JS56-009 SMOC]

向作者/读者索取更多资源

This study focuses on the description of an oceanic variant of the Charney baroclinic instability, arising from the joint presence of (i) an equatorward buoyancy gradient that extends from the surface into the ocean interior and (ii) reduced subsurface stratification, for example, as produced by wintertime convection or subduction. This study analyzes forced dissipative simulations with and without Charney baroclinic instability (C-BCI). In the former, C-BCI strengthens near-surface frontal activity with important consequences in terms of turbulent statistics: increased variance of vertical vorticity and velocity and increased vertical turbulent fluxes. Energetic consequences are explored. Despite the atypical enhancement of submesoscale activity in the simulation subjected to C-BCI, and contrary to several recent studies, the downscale energy flux at the submesoscale en route to dissipation remains modest in the flow energetic equilibration. In particular, it ismodest visa vis the global energy input to the system, the eddy kinetic energy input through conversion of available potential energy, and the classical inverse cascade of kinetic energy. Linear stability analysis suggests that the southern flank of the Gulf Stream may be conducive to oceanic Charney baroclinic instability in spring, following mode water formation and upper-ocean destratification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据