4.6 Article

Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation

期刊

SENSORS
卷 23, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/s23031112

关键词

GPS; EGNOS; satellite-based augmentation system (SBAS); unmanned aerial vehicle (UAV); Klobuchar and NeQuick

向作者/读者索取更多资源

This research focuses on the analysis of the positioning quality of a modified GPS/EGNOS algorithm, with considerations given to different ionospheric models. The results show that the original EGNOS ionospheric model maintains the best accuracy and correlation between horizontal and vertical results among the models examined.
Unmanned aerial vehicles (UAVs) have become very popular tools for geoinformation acquisition in recent years. They have also been applied in many other areas of life. Their navigation is highly dependent on global navigation satellite systems (GNSS). The European Geostationary Navigation Overlay Service (EGNOS) is intended to support GNSSs during positioning, mainly for aeronautical applications. The research presented in this paper concerns the analysis of the positioning quality of a modified GPS/EGNOS algorithm. The calculations focus on the source of ionospheric delay data as well as on the aspect of smoothing code observations with phase measurements. The modifications to the algorithm concerned the application of different ionospheric models for position calculation. Consideration was given to the EGNOS ionospheric model, the Klobuchar model applied to the GPS system, the Klobuchar model applied to the BeiDou system, and the NeQuick model applied to the Galileo system. The effect of removing ionospherical corrections from GPS/EGNOS positioning on the results of the determination of positioning quality was also analysed. The results showed that the original EGNOS ionospheric model maintains the best accuracy results and a better correlation between horizontal and vertical results than the other models examined. The additional use of phase-smoothing of code observations resulted in maximum horizontal errors of approximately 1.3 m and vertical errors of approximately 2.2 m. It should be noted that the results obtained have local characteristics related to the area of north-eastern Poland.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据