4.6 Article

Treatment of Extended Kalman Filter Implementations for the Gyroless Star Tracker

期刊

SENSORS
卷 22, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/s22229002

关键词

attitude; star tracker; Kalman Filter; Static Attitude Estimation; SSA

向作者/读者索取更多资源

Recent literature has explored the use of sole attitude determination devices, particularly star trackers, for accurate and precise measurement of angular velocity. The state approach is found to be more effective than error-based filtering in this aspect, providing important implications for space situational awareness object localization.
The literature since Apollo contains exhaustive material on attitude filtering, usually treating the problem of two sensors, a combination of state measuring and inertial devices. More recently, it has become popular for a sole attitude determination device to be considered. This is especially the case for a star tracker given its unbiased stellar measurement and recent improvements in optical sensor performance. The state device indirectly estimates the attitude rate using a known dynamic model. In estimation theory, two main attitude filtering approaches are classified, the additive and the multiplicative. Each refers to the nature of the quaternion update in the filter. In this article, these two techniques are implemented for the case of a sole star tracker, using simulated and real night sky image data. Both sets of results are presented and compared with each other, with a baseline established through a basic linear least square estimate. The state approach is more accurate and precise for measuring angular velocity than using the error-based filter. However, no discernible difference is observed between each technique for determining pointing. These results are important not only for sole device attitude determination systems, but also for space situational awareness object localisation, where attitude and rate estimate accuracy are highly important.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据