4.7 Article

Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 855, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.158829

关键词

Aquatic invertebrates; Bacterioplankton; Global warming; Gut microbiota; Thermal adaptation

向作者/读者索取更多资源

Integrating life-history, physiological, and behavioral traits into the pace-of-life helps understand trait variation in nature. This study provides evidence for the contribution of the gut microbiome to the latitudinal differentiation in both the pace-of-life and heat adaptation in damselfly larvae populations. The gut microbiome composition showed an adaptive latitude-specific shift under heat wave exposure.
The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace- of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 degrees C warming and a 30 degrees C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据