4.8 Article

Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 7, 期 9, 页码 1622-1627

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b00640

关键词

-

资金

  1. St. John's College, Cambridge
  2. Marie Sklodowska-Curie Individual Fellowship (Global) under grant ARTIST from the European Union [656870]
  3. Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
  4. Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
  5. Marie Curie Actions (MSCA) [656870] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu2+ oxidation state is stable in O-2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N-2, O-2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H-2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据