4.7 Article

Probabilistic fecal pollution source profiling and microbial source tracking for an urban river catchment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 857, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.159533

关键词

Recreational water quality; Advanced catchment survey; Zoonotic reference pathogens; Microbial source tracking; Fecal indicators; Micropollutants; Probabilistic modelling; Microbiological water safety; Informed choice of parameters

向作者/读者索取更多资源

We developed an innovative approach to estimate fecal pollution sources in urban river catchments. The approach involved catchment surveys, hypothesis generation, and verification with measured concentrations and correlation analysis. The results showed that treated wastewater discharge was the primary contributor to fecal pollution in dry weather, while combined sewer overflows were the main source in wet weather. The approach also demonstrated statistical relationships between microbial tracers and genetic fecal markers in the river, facilitating water safety management and microbial infection risk assessment.
We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99% of the daily produced FIBs and pathogens resulted fromcombined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservativemicrobial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据