4.7 Article

The constancy of chemical weathering intensity on hillslopes in the arid to semiarid Qilian Mountains, NE Tibetan Plateau

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 870, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.161946

关键词

Chemical depletion fraction; Chemical weathering; Uplift-weathering hypothesis; Qilian Mountains; Supply-limited condition

向作者/读者索取更多资源

Quantifying the relationship between chemical weathering and denudation rates in cold and arid environments is crucial for understanding the uplift-weathering hypothesis. In the Qilian Mountains, chemical weathering rates are positively correlated with precipitation, vegetation index, and denudation rate, and negatively correlated with temperature. This suggests that low temperatures promote near-surface chemical weathering and contribute to supply-limited conditions.
Quantifying the relationship between the chemical weathering and denudation rates of active orogenic belts over a range of climates is the key to addressing the controversy over the uplift-weathering hypothesis. However, studies have focused on warm and humid environments and have not examined cold and arid environments. Here, we present a new dataset of the chemical depletion fraction (CDF: ratio of the chemical weathering rate to the total denudation rate) across the arid to semiarid Qilian Mountains on the northeastern Tibetan Plateau, where the uplift-weathering hypothesis has been proposed. We selected 60 points from 12 catchments in the middle Qilian Mountains. At each point, we collected three samples (soil, saprolite, and bedrock samples) and calculated the CDF values based on their Zr concentrations. We found no clear correlation between the CDF and climatic factors (temperature, precipita-tion, and normalized difference vegetation index (NDVI)), topographic factors (slope and local relief), and denudation rate. The calculated chemical weathering rates, nevertheless, are positively correlated with precipitation, NDVI, and denudation rate, and negatively correlated with temperature. This result indicates that the Qilian Mountains are under supply-limited conditions, even at high denudation rates (>800 t km-2 y-1). We speculate that low tempera -tures (<0 degrees C) could intensify near-surface chemical weathering by promoting the physical breakdown of the bedrock and increasing soil water availability. This mechanism causes a compensation effect maintaining the supply-limited conditions in landscapes with high denudation rates. Combing a worldwide dataset regarding the correlations between CDF and climatic factors and denudation rates, we argue that intensified denudation since the late Cenozoic contributed to global cooling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据