4.7 Article

Plant species contribution to bioretention performance under a temperate climate

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 858, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.160122

关键词

Bioretention; Biofilter; Stormwater runoff management; Cold regions; Seasonal variation; Plant species

向作者/读者索取更多资源

Bioretention systems are important green infrastructures for managing urban stormwater runoff. This study compared the performance of four plant species in bioretention effectiveness during different growing periods and found that plant species selection is crucial for improving water quality and reducing runoff volume.
Bioretention systems are green infrastructures increasingly used to manage urban stormwater runoff. Plants are an es-sential component of bioretention, improving water quality and reducing runoff volume and peak flows. However, there is little evidence on how this contribution varies between species, especially in temperate climates with seasonal variations and plant dormancy. The aim of our study was to compare the performance of four plant species for bioretention effectiveness during the growing and dormant periods in a mesocosm study. The species selected (Cornus sericea, Juncus effusus, Iris versicolor, Sesleria autumnalis) are commonly used in bioretention and cover a wide range of biological forms and functional traits.All bioretention mesocosms were effective in reducing water vol-ume, flow and pollutant levels in both of the studied periods. Plants decreased runoff volume and increased contam-inant retention by reducing water flow (up to 2.7 times compared to unplanted systems) and increasing water loss through evapotranspiration during the growing period (up to 2.5 times). Plants improved removal of macronutrients, with an average mass removal of 55 % for TN, 81 % for TP and 61 % for K compared to -6 % (release), 61 % and 22 % respectively for the unplanted systems. Except for Sesleria, mass removal of trace elements in planted mesocosms was generally higher than in unplanted ones (up to 8.7 %), regardless of season. Between-species differences in exfiltration rate and improved water quality followed the same order as their evapotranspiration rate and overall size, measured in terms of plant volume, leaf biomass, total leaf area and maximum average root density (Cornus > Juncus > Iris > Sesleria). By increasing evapotranspiration, plants decreased runoff volume and increased contaminant retention. Nu-trient removal was partly explained by plant assimilation. Our study confirms the importance of plant species selection for improving water quality and reducing runoff volume during bioretention under a temperate climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据