4.7 Article

Fauna access outweighs litter mixture effect during leaf litter decomposition

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 860, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.160190

关键词

Biodiversity effects; Decomposers; Ecosystem function; Functional diversity; Functional traits; Litter quality

向作者/读者索取更多资源

Through a sixteen month long common garden litter decomposition experiment, we investigated the effects of litter diversity and soil fauna interactions on litter mixture decomposition. The results showed that soil fauna can enhance the decomposition rate of litter and the mixture effect strengthens with increased litter quality dissimilarity. Furthermore, the decomposition progress weakens the mixture effect.
Decomposition rates of litter mixtures reflect the combined effects of litter species diversity, litter quality, decom-posers, their interactions with each other and with the environment. The outcomes of those interactions remain am-biguous and past studies have reported conflicting results (e.g., litter mixture richness effects). To date, how litter diversity and soil fauna interactions shape litter mixture decomposition remains poorly understood. Through a sixteen month long common garden litter decomposition experiment, we tested these interaction effects using litterbags of three mesh sizes (micromesh, mesomesh, and macromesh) to disentangle the contributions of different fauna groups categorized by their size at Wuhan botanical garden (subtropical climate). We examined the decomposition of five single commonly available species litters and their full 26 mixtures combination spanning from 2 to 5 species. In total, 2325 litterbags were incubated at the setup of the experiment and partly harvested after 1, 3, 6, 9, and 16 months after exposure to evaluate the mass loss and the combined effects of soil fauna and litter diversity. We predicted that litter mixture effects should increase with increased litter quality dissimilarity, and soil fauna should enhance litter (both single species litter and litter mixtures) decomposition rate. Litter mass loss ranged from 26.9 % to 87.3 %. Soil fauna access to litterbags accelerated mass loss by 29.8 % on average. The contribution of soil mesofauna did not differ from that of soil meso-and macrofauna. Incubation duration and its interactions with litter quality dissimilarities together with soil fauna determined the litter mixture effect. Furthermore, the litter mixture effect weakened as the decomposition progresses. Faunal contribution was broadly additive to the positive mixture effect irrespective of litter species richness or litter dissimilarity. This implies that combining the dissimilarity of mixture species and contribu-tions of different soil fauna provides a more comprehensive understanding of mixed litter decomposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据