4.7 Review

Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 860, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.160476

关键词

Abiotic and biotic stresses; Climatic changing condition; Nano-biofertilizer; Nutrient useefficiency; Sustainable agriculture

向作者/读者索取更多资源

This article focuses on the application of nano-biofertilizers (NBF), which combine nanoparticles and biofertilizers to enhance plant growth and stress tolerance. NBFs are economically and environmentally sustainable, versatile, and long-lasting agriculture tools. The article also summarizes the formulation and characterization of NBFs, discusses their applications in precision farming, and explores future trends for developing potent NBFs.
Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persis-tent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, includ-ing chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contam-ination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characteri-zation of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据