4.8 Article

Rashba Effect and Carrier Mobility in Hybrid Organic-Inorganic Perovskites

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 7, 期 16, 页码 3078-3083

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.6b01404

关键词

-

资金

  1. U.S. Army Research Office [W911NF-15-1-0117]

向作者/读者索取更多资源

The outstanding photovoltaic performance in hybrid organic-inorganic perovskites (HOIPs) relies on their desirable carrier transport properties. In the HOIPs, strong spin-orbit coupling (SOC) and structural inversion asymmetry give rise to a giant spin splitting in the conduction and valence bands, that is, the Rashba effect (RE), a subject intensively studied in spintronics. Here we show that this giant RE can manifest itself in charge transport and is the key to understanding carrier mobility and its temperature dependence in the HOIPs. The RE greatly enhances acoustic-phonon scattering (APS) and alters the temperature dependence of carrier mobility from T-3/2 to T-1. Meanwhile, it reduces polar-optical phonon scattering (POPS). In CH3NH3PbI3, the carrier mobility is limited by the APS for temperatures up to 100 K, above which the POPS becomes dominant. The effective polar coupling is moderate, alpha = 1.1, indicating that band conduction is still a valid description of charge transport. Our results account for the observed carrier transport behaviors over the entire temperature range and highlight the importance of SOC in charge transport in the HOIPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据