4.7 Article

Geomechanical and Hydrogeological Evaluation of a Shallow Hydraulic Fracture at the Devine Fracture Pilot Site, Medina County, Texas

期刊

ROCK MECHANICS AND ROCK ENGINEERING
卷 56, 期 10, 页码 7049-7069

出版社

SPRINGER WIEN
DOI: 10.1007/s00603-022-03115-z

关键词

Hydraulic fracture diagnostics; Electrically active proppant; Fully coupled poroelastic model; Hydrogeological model; Pressure transient analysis

向作者/读者索取更多资源

The fracture diagnostic methods at UT-Austin's Devine Fracture Pilot Site were evaluated through injection tests and modeling analysis. The study successfully determined the permeability and reopening process of fractures, and improved the history match of pressure response.
UT-Austin's Devine Fracture Pilot Site, 50 miles southwest of San Antonio, Texas, has been targeted for a comprehensive, multidisciplinary development of fracture diagnostic techniques that are cross-validated by ground-truth data acquisition near a recently created, 175-ft-deep, horizontal hydraulic fracture (Ahmadian et al. 2018 Demonstration of proof of concept of electromagnetic geophysical methods for high resolution illumination of induced fracture networks. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 23-25 January 2018. SPE-189858-MS.). To evaluate the fracture diagnostic methods at this site, we conducted injection tests with a predefined volumetric flow-rate profile, resembling a diagnostic fracture injection test on September 2020. Subsequently, we developed hydrogeological and geomechanical models based on flow-rate and bottomhole-pressure measurements. History-matching efforts using a simplified layer-cake hydrogeological model resulted in the field-scale formation permeability of 9.87 x 10(-15) m(2) (10 mD) and Darcy-scale fracture permeability. The analysis of the bottomhole pressure and injection-rate history showed that (1) the newly created horizontal fracture was closed adjacent to the injection well pre-injection and (2) the initial pump-pressure increase at a nominal volumetric injection rate led to near-well fracture reopening, fluid conductivity increase, and abrupt injection-rate increase. To overcome hydrogeological-model limitations of predicting fracture reopening throughout injection, we extended the modeling to a finite-element, poroelastic analysis of horizontal-fracture growth using a cohesive-zone model. Using this fracture-reopening model, we improved the history match of the transient-pressure response during the experiment by adjusting the hydromechanical properties. Post-injection pressure transient analyses helped reduce uncertainty in the overburden-stress gradient, and the initial hydraulic-fracturing simulation verified the plausibility of achieving the surveyed propped fracture area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据