4.5 Article

Dynamic obstacle avoidance for Multi-rotor UAV using chance-constraints based on obstacle velocity

期刊

ROBOTICS AND AUTONOMOUS SYSTEMS
卷 160, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.robot.2022.104320

关键词

Chance constraints; Velocity obstacles; Collision avoidance; Formation flight; Path planning

向作者/读者索取更多资源

This study proposes a chance-constraints based on obstacle velocity (CCOV) method, which can be combined with previous positional chance constraint methods to account for uncertainty in both position and velocity. This effectively prevents collision with high-velocity obstacles, even in a noisy environment.
To ensure the safety of autonomous Multi-rotor UAVs flying in urban airspace, they should be capable of avoiding collisions with unpredictable dynamic obstacles, such as birds. UAVs must consider both relative position and relative velocity to avoid moving obstacles. Model predictive control (MPC) can consider the multiple collision avoidance constraints in a constrained optimisation framework. This study proposes a chance-constraints based on obstacle velocity (CCOV) method, which can be combined with previous positional chance constraint methods to account for uncertainty in both position and velocity. This effectively prevents collision with high-velocity obstacles, even in a noisy environment. The proposed method has been performed on a numerical simulation built in MATLAB.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据