4.6 Article

Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 4, 页码 2096-2108

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b11566

关键词

-

资金

  1. council of Iran National Science Foundation
  2. University of Kashan [159271/632]

向作者/读者索取更多资源

This paper reports the successful synthesis of various copper sulfide nanostructures via coprecipitation and hydrothermal routes using new starting reagents such as Na2SO3 as a reducing agent for converting Cu2+ to Cu+ and PMP dye-Cu(II) and carminic acid-Cu(II) complexes as new copper precursors for synthesizing quantum dots in aqueous medium. The as-synthesized products were extensively characterized by techniques including XRD, EDS, SEM, TEM, AFM, and DRS. Effects of different parameters such as temperature, surfactant, solvent, concentration, copper precursor, sulfide source, etc., on morphology and particle size of as-synthesized nanostructures were investigated. Moreover, the efficiency of various as-synthesized nanostructures in thin layer solar cells was evaluated. The results showed that particle size and morphology have a salient effect on solar cell efficiency. Also, utilizing prepared Cu2S quantum dots as a barrier layer in dye-sensitized solar cells (DSSCs) presented a remarkable increase in the efficiency of solar cells from 6.08% to 8.34% (similar to 37% improvement).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据