4.6 Article

Computational Model and Characterization of Stacking Faults in ZIF-8 Polymorphs

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 48, 页码 27380-27388

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b09317

关键词

-

资金

  1. Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012577]

向作者/读者索取更多资源

Degradation of metal organic frameworks (MOFs) in aqueous, humid, and acid gas environments likely begins at defect sites. Until now, however, theoretical studies of MOFs have widely assumed an ideal defect-free structure. Here we present a computational model for low-energy extended defects in bulk zeolitic imidazolate frameworks (ZIFs) that are analogous to stacking faults in zeolites. We demonstrate the thermodynamic accessibility of stacking faults in ZIFs and examine the impact of these defects on pore diffusion and accessible surface area. We identify strong correlations between the defect density of a structure and its X-ray diffraction spectra. By examining a topologically isomorphic ZIF that has been reported experimentally we find characteristic defect-induced peak broadening and splitting in the reported powder patterns, giving strong evidence for the existence for stacking faults in this material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据