4.7 Article

Toward consistent change detection across irregular remote sensing time series observations

期刊

REMOTE SENSING OF ENVIRONMENT
卷 285, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2022.113372

关键词

Time series analysis; Change detection; CCDC; Landsat; Land use and land cover change

向作者/读者索取更多资源

This study investigates the improvement of the Continuous Change Detection and Classification (CCDC) methodology by calculating a test for each band through time and summarizing between bands. The results show that the modified Band-First Probability (CCD-BFP) method improves consistency and accuracy compared to the existing implementation of CCDC, capturing notable land surface change events more accurately.
The use of remote sensing in time series analysis enables wall-to-wall monitoring of the land surface and is critical for assessing and understanding land cover and land use change and for understanding the Earth system as a whole. However, variability in remote sensing observation frequency through time and across space presents challenges for producing consistent change detection results throughout the available satellite record using approaches such as the Continuous Change Detection and Classification (CCDC) change detection methodology. Here we investigate new modifications to this methodology with the goal of improving accuracy and consistency in results and increasing flexibility for operational usage and future development. The modified method (Band-First Probability, or CCD-BFP) change detection procedure works by calculating a test for each band through time before summarizing between bands. We evaluate the CCD-BFP method compared to an existing implementation of CCDC using a variety of approaches, including a validation dataset of human -interpreted locations, comparison with data from fire events, use of simulated remote sensing data, and qualitative inspection of areas of interest. We find CCD-BFP improves consistency across time and space compared to the existing implementation of CCDC, with more similarity in rates of change across Landsat swath boundaries and before and after the launch of Landsat 7. Also, we find that CCD-BFP detects more of the change events in the validation dataset while reducing the overall number of change detections, indicating that it is able to more accurately capture the most notable land surface change events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据