4.7 Article

Microstructure and properties of gradient nitrided layer on Ti6Al4V alloys

期刊

RARE METALS
卷 42, 期 2, 页码 651-663

出版社

NONFERROUS METALS SOC CHINA
DOI: 10.1007/s12598-022-02122-x

关键词

Ti6Al4V; Induction nitriding; Gradient layer; High-density dislocation; Strengthening mechanism

向作者/读者索取更多资源

The vacuum electromagnetic induction nitriding technology was used to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy. The study found that there were numerous high-density stacking faults and basal stacking faults on the alloy surface, causing lattice distortion. Additionally, the hardness and compressive stress of the nitrided layer also changed.
The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy, which possesses TiN and alpha-Ti (N) phases. Moreover, transmission electron microscopy was conducted to confirm the presence of numerous high-density stacking faults caused by TiN and Ti2N phases distributed on the surface of the alloy, along with a large number of basal stacking faults inside. A high-density stacking fault led to serious distortion of lattice fringes. Lattice and numerous edge dislocations caused by defects were observed in the subsurface layer. For the surface layer, the Vickers hardness reached HV0.25 1211.30 and the residual compressive stress increased, while the nano-hardness increased to 14.07 from 5.31 GPa in the substrate. The micrometre scratch test results indicated that the plasticity and hardness of the nitrided layer changed in a gradient. The 50-mu m effective hardened layer depth and surface compressive stress of the Ti6Al4V alloy were enhanced by the stacking faults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据