4.6 Article

Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B)

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 40, 页码 22910-22917

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b08842

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/M009297]
  2. EPSRC [EP/M009297/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/M009297/1] Funding Source: researchfish

向作者/读者索取更多资源

In recent years, TiO2, as a potential electrode material in Li and Na batteries, has been the subject of considerable experimental and computational research. However, the typical density functional theory (DFT) functionals used (e.g., the generalized gradient (GGA)) for such calculations are not without their shortcomings. To avoid these well-known issues, we report the first use of hybrid DFT calculations to calculate the Li and Na intercalation properties for anatase, rutile, and TiO2(B). The magnitude of GGA intercalation voltage underestimation is shown to vary depending on the polymorphs. We find that Li intercalation is most energetically preferred in anatase, while Na intercalation is most feasible for TiO2(B). Using the screened exchange hybrid functional, all intercalation processes are shown to be thermodynamically favorable, with the exception of Na in rutile. The electronic structures of these intercalated materials are also calculated, and significant improvements, in terms of band gap prediction and charge localization, are presented in comparison with GGA. We hope that our results will encourage more use of hybrid density functionals in the modeling of fundamental battery material properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据