4.8 Review

Heterostructured materials

期刊

PROGRESS IN MATERIALS SCIENCE
卷 131, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pmatsci.2022.101019

关键词

-

向作者/读者索取更多资源

Heterostructured materials are a new class of materials composed of heterogeneous zones with dramatically different properties. They exhibit superior mechanical or physical properties that surpass their conventional homogenous counterparts. This review focuses on the structural heterostructured materials, which achieve their superior mechanical properties through hetero-deformation induced strengthening and work hardening. The unique deformation behavior of these materials, along with their wide application potential, is driving the rapid development of the field.
Heterostructured (HS) materials are a new class of materials that are composed of heterogeneous zones with dramatically different (>100 %) mechanical or physical properties. The interactive coupling between these heterogeneous zones produces a synergistic effect in which the integrated property exceeds the prediction by the rule-of-mixtures. HS materials possess superior mechanical or physical properties that are not achievable by their conventional homogenous counterparts. This review focuses primarily on structural HS materials, whose superior mechanical properties are enabled by a new scientific principle: hetero-deformation induced (HDI) strengthening and HDI work hardening. Geometrically necessary dislo-cations (GNDs) in the soft zones pile up and accumulate near the zone boundaries, producing back stress in the soft zones and forward stress in the hard zones, which collectively produces the HDI stress. HS materials have a unique deformation behavior: formation of dispersive microscopic strain bands, which helps to distribute plastic strain over the whole gauge length, increasing uniform elongation. They can be readily produced using conventional industrial technologies and facilities at large scale and low cost. The superior properties, new materials science and great application potentials are driving the fast development of the HS materials field. This review is meant to introduce students and researchers to this emerging field, and to serve as an authoritative reference on HS materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据