4.8 Article

Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer's disease

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2211999119

关键词

lysosome; vATPase; calcium; ryanodine receptor; Alzheimer's disease

向作者/读者索取更多资源

Impairments in Ca2+ signaling disrupt lysosomal acidification and contribute to pathological protein aggregation in neurodegenerative disorders like AD. Targeting the RyR-Ca2+ pathway could be a potential therapeutic intervention.
Impairments in neural lysosomal-and autophagic-mediated degradation of cellular debris contribute to neuritic dystrophy and synaptic loss. While these are well -charac-terized features of neurodegenerative disorders such as Alzheimer's disease (AD), the upstream cellular processes driving deficits in pathogenic protein mishandling are less understood. Using a series of fluorescent biosensors and optical imaging in model cells, AD mouse models and human neurons derived from AD patients, we reveal a previously undescribed cellular signaling cascade underlying protein mishandling mediated by intracellular calcium dysregulation, an early component of AD pathogenesis. Increased Ca2+ release via the endoplasmic reticulum (ER)-resident ryanodine receptor (RyR) is associated with reduced expression of the lysosome proton pump vacuolar-ATPase (vAT-Pase) subunits (V1B2 and V0a1), resulting in lysosome deacidification and disrupted proteolytic activity in AD mouse models and human-induced neurons (HiN). As a result of impaired lysosome digestive capacity, mature autophagosomes with hyperphosphoryl-ated tau accumulated in AD murine neurons and AD HiN, exacerbating proteinopathy. Normalizing AD-associated aberrant RyR-Ca2+ signaling with the negative allosteric modulator, dantrolene (Ryanodex), restored vATPase levels, lysosomal acidification and proteolytic activity, and autophagic clearance of intracellular protein aggregates in AD neurons. These results highlight that prior to overt AD histopathology or cognitive defi-cits, aberrant upstream Ca2+ signaling disrupts lysosomal acidification and contributes to pathological accumulation of intracellular protein aggregates. Importantly, this is demonstrated in animal models of AD, and in human iPSC-derived neurons from AD patients. Furthermore, pharmacological suppression of RyR-Ca2+ release rescued pro-teolytic function, revealing a target for therapeutic intervention that has demonstrated effects in clinically-relevant assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据