4.6 Article

Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI3 to MAPbI2Br Using Composition Spread Libraries

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 2, 页码 893-902

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b10728

关键词

-

资金

  1. U.S. Department of Energy Sunshot Initiative, Next Generation Photovoltaics 3 program [DE-EE0006710]
  2. University of Washington Clean Energy Institute

向作者/读者索取更多资源

The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV under 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (chi), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz-Keldysh broadening from local electric fields or from a screened Thomas-Fermi density of states (as opposed to a joint density of states due to Urbach disorder).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据