4.4 Article

Quantitative microscopy of mole rat eosinophil granule morphology

期刊

CELL AND TISSUE RESEARCH
卷 362, 期 1, 页码 139-151

出版社

SPRINGER
DOI: 10.1007/s00441-015-2189-5

关键词

Unit granule; Eosinophil; Quantitative microscopy

向作者/读者索取更多资源

Mole rat bone marrow cells and peritoneal eosinophils are used to study granule morphological maturation by quantitative microscopy. The bulk eosinophil granule content is pre-stored in unique granular structures known as crystalloid or secondary granules. Mole rat eosinophil granules exhibit the basic structure of an electron-dense crystalloid core surrounded by a lighter, homogeneous matrix. Morphometric analysis demonstrated that bone marrow-derived eosinophil sphere-like granules display a periodic, multimodal granule volume distribution. In contrast, peritoneal eosinophils display cigar-shaped granules, whose crystalloid cores are more variable in size and shape as compared to bone marrow eosinophil granules. Using a morphometric approach, we deduced that the basic granule volume quantum is similar in both cases, suggesting that the sphere-like young eosinophil granules turn into dense ellipsoidal ones by intragranular processes in which both volume and membrane surface are conserved. Crystalloid granule mediators are known to be widely associated with allergic inflammatory events, which may damage the host tissue following secretion to the extracellular environment. Based on mathematical modeling, we suggest that this deviation from sphere-like to ellipsoidal shape reflects an adaptive response of the mole rat to its unique solitary life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据