4.5 Article

Fabrication of poly(e-caprolactone)/paclitaxel (core)/chitosan/zein/multi-walled carbon nanotubes/doxorubicin (shell) nanofibers against MCF-7 breast cancer

期刊

出版社

WILEY
DOI: 10.1002/pat.5931

关键词

anticancer activity; breast cancer; core-shell nanofibers; in vivo; multi-walled carbon nanotubes

资金

  1. Alborz University of Medical Sciences

向作者/读者索取更多资源

In this study, paclitaxel, multi-walled carbon nanotubes, and doxorubicin were doped into poly(epsilon-caprolactone)/chitosan/zein core-shell nanofibers to increase their cytotoxicity for breast cancer cells. The synthesized nanofibers showed sustained release of drugs and high biocompatibility, effectively inhibiting tumor growth.
In the present study, paclitaxel (PTX), multi-walled carbon nanotubes (MWCNTs), and doxorubicin (DOX) have been simultaneously doped into the poly(epsilon-caprolactone) (PCL)/chitosan/zein core-shell nanofibers to increase its cytotoxicity for MCF-7 breast cancers killing. The physico-chemical properties of synthesized nanofibers were determined by scanning electron microscope, Fourier-transform infrared spectroscopy, tensile strength, and degradation rate determinations. The in vitro release studies demonstrated the sustained release of drugs from core-shell nanofibrous scaffold. The cytotoxicity and compatibility of core-shell nanofibers were investigated by their treating with MCF-7 breast cancer cells and L929 normal cells, respectively. PCL/PTX/chitosan/zein/MWCNTs/DOX core-shell nanofibers containing 1 wt% MWCNTs, 100 mu g ml(-1) DOX and 100 mu g ml(-1) PTX had a high biocompatibility with a 84% MCF-7 cancer cells killing. The in vivo studies revealed the synergic effects of MWCNTs and anticancer drugs on the tumor inhibition. This method could be considered as a new way for developing of MWCNTs loaded-nanofibers for cancer treatment in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据