4.5 Article

Synthesis, physicochemical properties, biological, molecular docking and DFT investigation of Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the 4-[(5-oxo-4,5-dihydro-1,3-thiazol-2-yl)hydrazono]methyl}phenyl 4-methylbenzenesulfonate Schiff-base ligand

期刊

POLYHEDRON
卷 230, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.poly.2022.116219

关键词

Schiff-base ligand; Complexes; DFT; Molecular docking; Thermal studies; Biological activity

向作者/读者索取更多资源

A new Schiff-base ligand and its metal complexes with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) were synthesized and characterized. The metal complexes exhibited either a tetrahedral or octahedral structure. In addition to their antibacterial and antifungal efficacy, the metal complexes also showed higher antioxidant activity compared to the free ligand.
A new Schiff-base ligand, 4-[(4-oxo-4,5-dihydro-1,3-thiazol-2-yl)hydrazono]methylphenyl 4-methylbenzenesul-fonate (L), and its Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes were synthesized and characterized. Elemental analysis, NMR spectroscopy, mass spectra, FT-IR analysis, molar conductivity, magnetic susceptibility tests and electronic spectra (UV-vis.) were all used to describe the ligand and its metal complexes. The complexes of Ni(II) and Zn(II) were found to have a tetrahedral structure, whereas those of Fe(III), Co(II) and Cu(II) exhibited an octahedral structure. The geometry of the ligand and its metal complexes was investigated by density functional theory (DFT) calculations at the B3LYP/6-311G(d, p) and LanL2dz levels of theory, respec-tively. To round out the picture, we evaluated not only the overall energy but also the HOMO and LUMO mo-lecular orbitals and the molecular electrostatic potential (MEP). The synthetic analogues were tested for their in vitro antibacterial and antifungal efficacy against various pathogens using the disc diffusion method. The research shows that the metal complexes are more effective against these diseases than the free ligand. In addition, the DPPH method was used to measure the antioxidant activity in vitro. The antioxidant activity of each complex was higher than that of its free corresponding ligand. Molecular docking was carried out to determine the interactions between the complexes and the probable binding sites of Human Peroxiredoxin 2 Oxidized (PDB ID: 5IJT) and Escherichia coli (PDB ID: 3t88) receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据