4.6 Article

Simulating transport and distribution of marine macro-plastic in the Baltic Sea

期刊

PLOS ONE
卷 18, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0280644

关键词

-

向作者/读者索取更多资源

This study simulated the spatial distribution and dynamics of macro plastic in the Baltic Sea using a new Lagrangian approach called DRRS. The simulations were based on mapping the macro plastic sources and five years of wind, wave, and current data. The model setup was validated against beach litter observations and showed significant temporal and spatial variability in plastic concentrations. The study also found that litter sorting patterns are observable in many coastal and offshore environments.
We simulated the spatial distribution and dynamics of macro plastic in the Baltic Sea, using a new Lagrangian approach called the dynamical renormalization resampling scheme (DRRS). This approach extends the super-individual simulation technique, so the weight-per-individual is dynamic rather than fixed. The simulations were based on a mapping of the macro plastic sources along the Baltic coast line, and a five year time series of realistic wind, wave and current data to resolve time-variability in the transport and spatial distribution of macro plastics in the Baltic Sea. The model setup has been validated against beach litter observations and was able to reproduce some major spatial trends in macroplastic distributions. We also simulated plastic dispersal using Green's functions (pollution plumes) for individual sources. e.g. rivers, and found a significant variation in the spatial range of Green's functions corresponding to different pollution sources. We determined a significant temporal variability (up to 7 times the average) in the plastic concentration locally, which needs to be taken into account when assessing the ecological impact of marine litter. Accumulation patterns and litter wave formation were observed to be driven by an interplay between positive buoyancy, coastal boundaries and varying directions of physical forcing. Finally we determined the range of wind drag coefficients for floating plastic, where the dynamics is mostly directly wind driven, as opposed to indirectly by surface currents and waves. This study suggests that patterns of litter sorting by transport processes should be observable in many coastal and off-shore environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据