4.6 Article

An SUI-based approach to explore visual search results cluster-graphs

期刊

PLOS ONE
卷 18, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0280400

关键词

-

向作者/读者索取更多资源

Nowadays, with the exponential growth of online production and extensive perceptual power of visual contents, users' information needs have become complicated. Research has shown that users have a keen interest in accessing image objects to satisfy their visual information needs. However, existing search engines hinder image exploration due to linear lists or grid layouts that sort image results by relevancy. This research proposes a Search User Interface (SUI) approach to enable non-linear reachability of image results by offering interactive exploration and visualization options, resulting in high satisfaction (76.83%) and usability (83.73%) scores according to usability tests.
Nowadays, exponential growth in online production and extensive perceptual power of visual contents (i.e., images) complicate the users' information needs. The research has shown that users are interested in satisfying their visual information needs by accessing the image objects. However, the exploration of images via existing search engines is challenging. Mainly, existing search engines employ linear lists or grid layouts, sorted in descending order of relevancy to the user's query to present the image results, which hinders image exploration via multiple information modalities associated with them. Furthermore, results at lower-ranking positions are cumbersome to reach. This research proposed a Search User Interface (SUI) approach to instantiate the non-linear reachability of the image results by enabling interactive exploration and visualization options. We represent the results in a cluster-graph data model, where the nodes represent images and the edges are multimodal similarity relationships. The results in clusters are reachable via multimodal similarity relationships. We instantiated the proposed approach over a real dataset of images and evaluated it via multiple types of usability tests and behavioral analysis techniques. The usability testing reveals good satisfaction (76.83%) and usability (83.73%) scores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据