4.5 Article

Control strategies for atmospheric pressure plasma polymerization of fluorinated silane thin films with antiadhesive properties

期刊

PLASMA PROCESSES AND POLYMERS
卷 20, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppap.202200194

关键词

aerosol precursor; AP-PECVD; fluorine-containing coatings; process control; Yasuda parameter

向作者/读者索取更多资源

The validity of the Yasuda parameter W/FM as a controlling parameter for plasma polymerization is demonstrated using an atmospheric pressure single electrode plasma jet. Thin films deposited under different W/FM values exhibit different chemical and physical properties. Coatings with similar characteristics can be obtained regardless of the power and feed rate values adopted. Preliminary results show that the deposited coatings have antiadhesive activity against Pseudomonas aeruginosa and Staphylococcus aureus.
Finding proper strategies to control plasma polymerization processes is a crucial aspect to produce thin films with tailored characteristics. In this work, the validity of the Yasuda parameter W/FM (W: discharge power and FM: precursor feed rate) as a controlling parameter for a polymerization process assisted by an atmospheric pressure single electrode plasma jet and the aerosolized fluorinated silane precursor trimethoxy(3,3,3-trifluoropropyl)silane is demonstrated. The properties of thin films deposited under different W/FM values are discussed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and scanning electron microscopy (SEM). Results suggest the presence of two deposition domains as a function of W/FM (an energy-deficient domain and a monomer-deficient domain), each inducing coatings with different chemical and physical properties. Furthermore, coatings deposited under the same W/FM values exhibit similar characteristics regardless of the power and feed rate values adopted. Considering the potential use of the deposited coatings to increase the antiadhesive properties of implantable medical devices, preliminary results on coatings' antiadhesive activity against Pseudomonas aeruginosa and Staphylococcus aureus are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据