4.7 Article

Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 194, 期 -, 页码 731-741

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2022.12.021

关键词

P deficiency; Pi transporter; Pi uptake; Gene expression; Stylosanthes guianensis

向作者/读者索取更多资源

Phosphorus is an important macronutrient for plant growth, and the phosphate transporter (PT) genes in stylo play a crucial role in nutrient deficiency response and phosphorus uptake.
Phosphorus (P) is one of the principal macronutrients for plant growth and productivity. Although the phosphate (Pi) transporter (PT) of the PHT1 family has been functionally characterized as participating in Pi uptake and transport in plants, information about PT genes in stylo (Stylosanthes guianensis), an important tropical forage legume that exhibits good adaptability to low-P acid soils, is limited. In this study, stylo root growth was found to be stimulated under P deficiency. The responses of PT genes to nutrient deficiencies and their roles in Pi uptake were further investigated in stylo. Four novel PT genes were identified in stylo and designated SgPT2 to SgPT5. Like SgPT1, which had been previously identified, all five SgPT proteins harboured the major facilitator superfamily (MFS) domain. Variations in tissue-specific expression were observed among the SgPT genes, which displayed diverse responses to deficiencies in nitrogen (N), P and potassium (K) in stylo roots. Four of the five SgPTs exhibited high levels of transcriptional responsiveness to P deficiency in roots. Furthermore, SgPT1, a Pi starvation-induced gene closely related to legume PT homologues that participate in Pi transport, was selected for functional analysis. SgPT1 was localized to the plasma membrane. Analysis of transgenic Arabidopsis showed that overexpression of SgPT1 led to increased Pi accumulation and promoted root growth in Arabidopsis plants. Taken together, the results of this study suggest the involvement of SgPTs in the stylo response to nutrient deprivation. SgPT1 might mediate Pi uptake in stylo, which is beneficial for root growth during P deficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据