4.6 Article

Ultramicroelectrode Studies of Self-Terminated Nickel Electrodeposition and Nickel Hydroxide Formation upon Water Reduction

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 48, 页码 27478-27489

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b10006

关键词

-

资金

  1. National Institute of Standards and Technology-National Research Council research associateship program

向作者/读者索取更多资源

The interaction between electrodeposition of Ni and electrolyte breakdown, namely, the hydrogen evolution reaction (HER) via H3O+ and H2O reduction, was investigated under well-defined mass transport conditions using ultra-microelectrodes (UMEs) coupled with optical imaging, generation/collection scanning electrochemical microscopy, and preliminary microscale pH measurements. For 5 mmol/L NiCl2 + 0.1 mol/L NaCl, pH 3.0, electrolytes, the voltammetric current at modest overpotentials, i.e., between -0.6 and -1.4 V vs Ag/AgCl, was distributed between metal deposition and H3O+ reduction, with both reactions reaching mass transport-limited current values. At more negative potentials, an unusual sharp current spike appeared upon the onset of H2O reduction that was accompanied by a transient increase in H-2 production. The peak potential of the current spike was a function of both [Ni(H2O)(6)](2+)(aq) concentration and pH. The sharp rise in current was ascribed to the onset of autocatalytic H2O reduction, where electrochemically generated OH species induce heterogeneous nucleation of Ni(OH)(2)(ads) islands, the perimeter of which is reportedly active for H2O reduction. As the layer coalesces, further metal deposition is quenched while H2O reduction continues, albeit at a decreased rate as fewer of the most reactive sites, e.g., Ni/Ni(OH)(2) island edges, are available. At potentials below -1.5 V vs Ag/AgCl, H2O reduction is accelerated, leading to homogeneous precipitation of bulk Ni(OH)(2)xH(2)O within the nearly hemispherical diffusion layer of the UME.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据