4.7 Article

Sedimentation of elliptical particles in Bingham fluids using graphics processing unit accelerated immersed boundary-lattice Boltzmann method

期刊

PHYSICS OF FLUIDS
卷 35, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0133124

关键词

-

向作者/读者索取更多资源

The sedimentation characteristics of elliptical particles settling in confined, vertical channels in Bingham fluids were studied using the immersed boundary-lattice Boltzmann method. It was found that the sedimentation modes include single particle settling, pair particle settling, chain particle settling, and cluster particle settling. The influence of yield stress on sedimentation behavior was particularly investigated.
Elliptical particles settling in Bingham fluids in a confined, the vertical channel is studied using the immersed boundary-lattice Boltzmann method to understand their sedimentation characteristics. The present elliptical particles-Bingham fluids two-phase systems involve a single particle, a pair of particles, a chain of particles, and a cluster of particles. The graphics processing unit (GPU) is used to improve computational efficiency. Special attention is placed on the influence of yield stress on sedimentation behavior. For a pair of elliptic particles, alongside the drafting-kissing-tumbling (DKT) mode or non-DKT sedimentation mode, a periodic sedimentation mode is found. The results indicate that two elliptic particles keep a kissing state and their trajectories and orientations periodically change during settling in the confined channel. For the elliptic particles chain, the first kissing occurs between the middle and lower particles regarding any Bingham number. Moreover, particles form the cluster for different inclination angles of the particle chain at the Bingham number Bn = 0.02. For the cluster of particles ( 15 x 15 ), the effect of vortex interaction around particles in Newtonian fluids is revealed, and the rheological property of the fluid-particle interaction in Bingham fluids is displayed. Overall, the role of yield stress on the sedimentation of elliptic particles is significant. With the acceleration of GPU, the present method has great potential for modeling large numbers of particles settling in non-Newtonian fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据