4.6 Article

Toward the Exploration of the NiTi Phase Diagram with a Classical Force Field

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 120, 期 43, 页码 25043-25052

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b07358

关键词

-

资金

  1. European Commission through the FP7 Initial Training Network ARGENT [608163]
  2. Alexander von Humboldt-Foundation

向作者/读者索取更多资源

Classical force fields, used for atomistic modeling of metal materials, are typically constructed to match low-temperature properties obtained in experiments or from quantum-level calculations. However, force fields can systematically fail to reproduce further fundamental parameters, such as the melting point. In this work, we present a modified force field for modeling metallic compounds, which has been implemented in the MBN Explorer software package. It is employed to simulate different regions of the composition temperature size phase diagram of nickel titanium nanoalloys with particular focus on the evaluation of the melting point of NixTi1-x(x = 0.45-0.55) systems. A near-equiatomic NiTi alloy is of paramount interest for biomedical and nanotechnology applications due to its shape memory behavior, but experiments and theory are inconsistent regarding its structural ground-state properties. The presented force field is used to predict the ground-state structure of an equiatomic NiTi nanoalloy. We observe that this compound does not possess the shape memory capacity because it stabilizes in the austenite instead of the required martensite crystalline phase. All results of our atomistic approach utilizing molecular dynamics and Monte Carlo techniques are in agreement with respective,,ab initio calculations and the available experimental findings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据