4.8 Article

Thermalization of Interacting Quasi-One-Dimensional Systems

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.030401

关键词

-

向作者/读者索取更多资源

Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled chains, where weak interchain couplings play a crucial role in thermalizing the system. We developed a Boltzmann-equation formalism involving a collision integral that is asymptotically exact for any interacting integrable system, and applied it to study relaxation in coupled Bose gases in the Newton's cradle setup. We found that relaxation involves a broad spectrum of timescales and the Markov process governing relaxation at late times is gapless, leading to nonexponential approach to equilibrium even for spatially uniform perturbations.
Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled chains. In these systems, there is a natural separation of scales between the strong intrachain interactions and the weak interchain coupling. When the intrachain interactions are integrable, weak interchain couplings play a crucial part in thermalizing the system. Here, we develop a Boltzmann-equation formalism involving a collision integral that is asymptotically exact for any interacting integrable system, and apply it to develop a quantitative theory of relaxation in coupled Bose gases in the experimentally relevant Newton's cradle setup. We find that relaxation involves a broad spectrum of timescales. We provide evidence that the Markov process governing relaxation at late times is gapless; thus, the approach to equilibrium is generally nonexponential, even for spatially uniform perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据