4.8 Article

Coarse Graining DNA: Symmetry, Nonlocal Elasticity, and Persistence Length

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.058402

关键词

-

向作者/读者索取更多资源

By utilizing the rigid base-pair model, this study establishes a connection between the microscopic parameters of DNA and its persistence length, shedding light on the determination of the scale dependence of elastic moduli. This has implications for understanding DNA-protein interactions and nucleosome diffusion mechanism.
While the behavior of double-stranded DNA at mesoscopic scales is fairly well understood, less is known about its relation to the rich mechanical properties in the base-pair scale, which is crucial, for instance, to understand DNA-protein interactions and the nucleosome diffusion mechanism. Here, by employing the rigid base-pair model, we connect its microscopic parameters to the persistence length. Combined with all-atom molecular dynamic simulations, our scheme identifies relevant couplings between different degrees of freedom at each coarse-graining step. This allows us to clarify how the scale dependence of the elastic moduli is determined in a systematic way encompassing the role of previously unnoticed off-site couplings between deformations with different parity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据