4.8 Article

Irreducible Magic Sets for n-Qubit Systems

期刊

PHYSICAL REVIEW LETTERS
卷 129, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.129.200401

关键词

-

向作者/读者索取更多资源

Magic sets of observables are fundamental tools for investigating the interface between classical and quantum physics. This study answers two open questions regarding magic sets and provides an efficient algorithm for determining if a hypergraph can accommodate a magic set.
Magic sets of observables are minimal structures that capture quantum state-independent advantage for systems of n >= 2 qubits and are, therefore, fundamental tools for investigating the interface between classical and quantum physics. A theorem by Arkhipov (arXiv:1209.3819) states that n-qubit magic sets in which each observable is in exactly two subsets of compatible observables can be reduced either to the twoqubit magic square or the three-qubit magic pentagram [N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990)]. An open question is whether there are magic sets that cannot be reduced to the square or the pentagram. If they exist, a second key question is whether they require n > 3 qubits, since, if this is the case, these magic sets would capture minimal state-independent quantum advantage that is specific for n-qubit systems with specific values of n. Here, we answer both questions affirmatively. We identify magic sets that cannot be reduced to the square or the pentagram and require n = 3, 4, 5, or 6 qubits. In addition, we prove a generalized version of Arkhipov's theorem providing an efficient algorithm for, given a hypergraph, deciding whether or not it can accommodate a magic set, and solve another open problem, namely, given a magic set, obtaining the tight bound of its associated noncontextuality inequality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据