4.8 Article

Crosstalk Suppression in Individually Addressed Two-Qubit Gates in a Trapped-Ion Quantum Computer

期刊

PHYSICAL REVIEW LETTERS
卷 129, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.129.240504

关键词

-

向作者/读者索取更多资源

In quantum computers, crosstalk between the target and neighboring spectator qubits due to the spillover of control signals is a major error source limiting the fidelity of two-qubit entangling gates. This study proposes a crosstalk suppression scheme that eliminates all first-order crosstalk using only local control of the target qubits, as opposed to existing schemes. Experimental results in a laser-driven trapped-ion system show high fidelity for the two-qubit Bell state, indicating the potential applicability of this scheme to other platforms with analogous interaction Hamiltonians.
Crosstalk between target and neighboring spectator qubits due to spillover of control signals represents a major error source limiting the fidelity of two-qubit entangling gates in quantum computers. We show that in our laser-driven trapped-ion system coherent crosstalk error can be modeled as residual X sigma phi interaction and can be actively canceled by single-qubit echoing pulses. We propose and demonstrate a crosstalk suppression scheme that eliminates all first-order crosstalk utilizing only local control of target qubits, as opposed to an existing scheme which requires control over all neighboring qubits. We report a two-qubit Bell state fidelity of 99.52(6)% with the echoing pulses applied after collective gates and 99.37(5)% with the echoing pulses applied to each gate in a five-ion chain. This scheme is widely applicable to other platforms with analogous interaction Hamiltonians.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据