4.6 Article

Computational design of novel MAX phase alloys as potential hydrogen storage media combining first principles and cluster expansion methods

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 25, 期 6, 页码 5203-5210

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp05587b

关键词

-

向作者/读者索取更多资源

Finding a suitable material for hydrogen storage under ambient atmospheric conditions is challenging. In this study, the hydrogen storage capacity of Ti(2)AC MAX phase and its alloys were investigated using a first principles based cluster expansion approach. It was found that hydrogen adsorption is energetically more favorable on the tetrahedral site in the Ti-A layer. Ti2CuC has the highest hydrogen adsorption energy and a Cu-doped Ti2AlxCu1-xC alloy structure can store 3.66 wt% hydrogen under ambient atmospheric conditions, surpassing Ti2AlC and Ti2CuC phases.
Finding a suitable material for hydrogen storage under ambient atmospheric conditions is challenging for material scientists and chemists. In this work, using a first principles based cluster expansion approach, the hydrogen storage capacity of the Ti(2)AC (A = Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn) MAX phase and its alloys was studied. We found that hydrogen is energetically stable in Ti-A layers in which the tetrahedral site consisting of one A atom and three Ti atoms is energetically more favorable for hydrogen adsorption than other sites in the Ti-A layer. Ti2CuC has the highest hydrogen adsorption energy than other Ti(2)AC phases. We find that the 83.33% Cu doped Ti2AlxCu1-xC alloy structure is both energetically and dynamically stable and can store 3.66 wt% hydrogen under ambient atmospheric conditions, which is higher than that stored by both Ti2AlC and Ti2CuC phases. These findings indicate that the hydrogen capacity of the MAX phase can be significantly improved by doping an appropriate atom species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据