4.6 Article

Molecular cluster analysis using local order parameters selected by machine learning

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 25, 期 1, 页码 658-672

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp03696g

关键词

-

资金

  1. JST, PRESTO, Japan
  2. [JPMJPR22O6]

向作者/读者索取更多资源

This study developed a machine learning package called MALIO for quickly and automatically selecting local order parameters (LOPs), uncovering their importance in distinguishing liquid crystal phases and observing phase transitions, and identifying the best-performing LOP species.
Accurately extracting local molecular structures is essential for understanding the mechanisms of phase and structural transitions. A promising method to characterize the local molecular structure is defining the value of the local order parameter (LOP) for each particle. This work develops the Molecular Assembly structure Learning package for Identifying Order parameters (MALIO), a machine learning package that can propose an optimal (set of) LOP(s) quickly and automatically for a huge number of LOP species and various methods of selecting neighboring particles for the calculation. We applied this package to distinguish between the nematic and smectic phases of uniaxial liquid crystal molecules, and selected candidate LOPs that could be used to precisely observe the nematic-smectic phase transition. The LOP candidates were used to observe the nucleation and subsequent percolation transition, and the effect of the choice of LOP species and neighboring particles on the statistics of local molecular structures (clusters) was examined. The procedure revealed the time evolution of the number of clusters and the dependence of the percolation curve on the number of neighboring particles for each LOP species. The LOP species with the lowest dependence on the number of neighboring particles was the best-performing LOP species in the MALIO screening strategy. These results not only show that machine learning can powerfully screen a huge number of LOP species and suggest only a few promising candidates, but also indicate that MALIO can select the best LOP species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据