4.6 Article

Energy-dependent timescales in the dissociation of diiodothiophene dication

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 25, 期 7, 页码 5795-5807

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp05309h

关键词

-

向作者/读者索取更多资源

Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied using an electron-energy-resolved electron-multi-ion coincidence experiment. The dissociation landscape and timescales of the molecular dication were investigated as a function of the Auger electron energy. The process was shown to evolve from secondary dissociation regime towards concerted dissociation with increasing available energy.
Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ -> C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据