4.5 Article

Non-adiabatic quantum control of quantum dot arrays with fixed exchange using Cartan decomposition

出版社

ROYAL SOC
DOI: 10.1098/rsta.2021.0275

关键词

quantum dots; quantum gates; Cartan decomposition; lie algebras

资金

  1. Army Research Office (ARO) [W911NF-17-1-0287]
  2. National Science Foundation [1915064]

向作者/读者索取更多资源

In this study, a method for implementing spin state transfer in long chains of singly occupied quantum dots in a non-adiabatic manner is proposed. The interacting problem is broken down into simpler problems using Cartan decomposition, and smooth non-adiabatic pulses are designed using dynamical invariants, which can be implemented in devices with modest control bandwidth. The extensibility of the results to directed shuttling of spin states on two-dimensional lattices of quantum dots with fixed coupling is also discussed.
In semiconductor spin qubits which typically interact through short-range exchange coupling, shuttling of spin is a practical way to generate quantum operations between distant qubits. Although the exchange is often tunable through voltages applied to gate electrodes, its minimal value can be significantly large, which hinders the applicability of existing shuttling protocols to such devices, requiring a different approach. In this work, we extend our previous results for double- and triple-dot systems, and describe a method for implementing spin state transfer in long chains of singly occupied quantum dots in a non-adiabatic manner. We make use of Cartan decomposition to break down the interacting problem into simpler problems in a systematic way, and use dynamical invariants to design smooth non-adiabatic pulses that can be implemented in devices with modest control bandwidth. Finally, we discuss the extensibility of our results to directed shuttling of spin states on two-dimensional lattices of quantum dots with fixed coupling.This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据